MTH207 - Discrete Structures 1

Sample Questions for Exam 1
Fall 2014

1. Let A, B, and C denote three sets.
a. Give an example to show that if $A \cup B=A \cup C$ then set B need not equal set C.
b. Give an example to show that if $A \cap B=A \cap C$ then set B need not equal set C.
2. a. State the two De Morgan's Laws:

$$
\overline{A \cap B}=\quad \text { and } \overline{A \cup B}=
$$

\qquad
b. Use these laws to show the following:

$$
\overline{(A \cap \bar{B}) \cup C}=(\overline{A \cup C}) \cup(B \cap \bar{C})
$$

3. Prove that $5^{n+1}+2.3^{n}+1$ is a multiple 8 for all positive integers n.
4. Prove the following: If x is an irrational non-negative number, then \sqrt{x} is irrational.
5. If you know that the proposition $(p \wedge q) \rightarrow r \vee s$ is false, what can you say about the truth values of the propositions: $(r \vee-s) \rightarrow-p ? p \rightarrow q \vee r \vee s$?
6. Construct the truth table of $(p \wedge q) \vee(-p \wedge q)$.
7. Show in 2 different ways the equivalence of the following statements: $p \rightarrow(q \rightarrow r)$ and $(p \wedge q) \rightarrow r$
8. Let $P(x, y)$ denote the predicate y is a multiple of x, where x and y are positive integers.
a. Translate into English the statement $\forall x, \exists y P(x, y)$
b. Write the negation of the statement in part a. using English.
c. Write the negation using symbols.
9. State the converse and the contra-positive of the conditional statement: If it is sunny tomorrow, then I will go for a walk in the woods.
10. What is the difference between the following nested quantifications: $\forall x, \exists y P(x, y)$ and $\exists x, \forall y P(x, y)$? Give an example of a predicate $P(x, y)$ to show that $\forall x, \exists y P(x, y)$ and $\exists x, \forall y P(x, y)$ have different truth values.
11. Show that $3 n+2$ is odd if and only if $9 n+5$ is even.

Sample Exam - MTH 207. Some answers
2) (b)

$$
\begin{aligned}
\overline{(A \cap \bar{B}) \cup C} & =\overline{(A \cap \bar{B}) \cap \bar{C}} \\
& =(\bar{A} \cup \bar{B}) \cap \bar{C}=(\bar{A} \cup B) \cap \bar{C}=(\bar{A} \cap \bar{C}) \cup(B \cap \bar{C}) \\
& =(\overline{A \cup C}) \cup(B \cap \bar{C})
\end{aligned}
$$

3) $\left(5^{n+1}+2 \cdot 3^{n}+1\right)$ is a inultiple of 8 , for all $n \geq 1$.

$$
n=1 ; 5^{2}+2 \cdot 3^{1}+1=32
$$

Suppose $\left(5^{k+1}+2 \cdot 3^{k}+1\right)$ is a multiple of 8
To show: $\left(5^{k+2}+2 \cdot 3^{k+1}+1\right)$ is a multiple of 8
Incleed, $\left(5^{k+2}+2 \cdot 3^{k+1}+1\right)=5 \cdot 5^{k+1}+2 \cdot 3^{k+1}+1$

$$
\begin{aligned}
& =5 \cdot\left(5^{k+1}+2 \cdot 3^{k}+1\right)-5 \cdot 2 \cdot 3^{k}-5+2 \cdot 3^{k+1}+1 \\
& =5 \cdot(8 m)-3^{k}(10-6)-4 \\
& =5 \cdot(8 m)-4\left(3^{k}+1\right)
\end{aligned}
$$

Now 3^{k} is od $\Rightarrow\left(3^{k}+1\right)$ is even

$$
\Rightarrow\left(3^{2}+1\right) \times 4 \text { is a multiple of } 8
$$

Hence the result follows.
4) If x is irrational, then \sqrt{x} is irrational Equivalently: if \sqrt{x} is rational, then x is ration. \sqrt{x} is rational $\Rightarrow \sqrt{x}=\frac{m}{n} \Rightarrow x=\frac{m^{2}}{n^{2}}$, a rational number.

If $(p \wedge q) \rightarrow(r \vee s)$ is false，then
$(p \wedge q)$ is True \＆$(r \vee s)$ is false
$\therefore \rho$ is T, q is T, r is $F, \notin s$ is F ．
（you can now proceede form here）
）easy
－）One way is the büth table．
2ご高Method：$\quad p \rightarrow(q \rightarrow r) \equiv-p v(q \rightarrow r)$

$$
\begin{aligned}
& \equiv-p \vee(-q \vee r) \\
& \equiv(-p \vee-q) \vee r \\
& \equiv-(p \wedge q) \vee r \\
& \equiv(p \wedge q) \rightarrow r .
\end{aligned}
$$

3）（A）Every inter x has a multiple．
（c）$\exists x, \nabla y-P(x, y)$
（b）There exists a＋ve intage that has no multiples．
$(3 n+2$ odd $) \Longleftrightarrow(9 n+5)$ is even．
DoS：Suppose $3 N+2=2 k+1 \Rightarrow 3 n=2 k-1$

$$
\begin{aligned}
\Rightarrow 9 n+5=9(3 n) \times 5 & =9(2 k-1)+5 \\
& =18 k-4=2(9 k-2) \text { even. }
\end{aligned}
$$

Suffer now that g_{n+5} is even \Rightarrow ，to show $3 n+2$ is odd． Do instead：$(3 n+2)$ ever $\Rightarrow(9 n+5)$ odd．

$$
3 r+2=2 k \Rightarrow 3 n=2 k-2 \Rightarrow 9 n+5=3(2 k-2)+5=6 k-1 \text { sold }
$$

